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It is demonstrated that FOL-M@NLP serves as a potent and safe antitumour platform that facilitates the
advancement of therapeutic biological vaccine platforms.
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Abstract

Peptide vaccines have potential for tumour immunotherapy but face challenges in
clinical trials, such as human leukocyte antigen limitations, potential cytotoxic T
lymphocyte tolerance, short T-cell response duration, weak immune response, and other
issues. Optimizing the antigens of peptide vaccines and selecting an effective delivery
system are crucial for enhancing their antitumour effects. 3 multiepitope long peptides
(NLP) targeting the NY-ESO-1 antigen were screened using bioinformatics methods.
An engineered Lactococcus lactis strain (FOLactis) expressing FMS-like tyrosine
kinase 3 ligand and the costimulator OX40 ligand was previously developed to activate
immune cells. In this study, FOLactis was utilized as a biological carrier for NLP via
Mg?*-based metal-organic frameworks to stimulate innate and adaptive immunity. The
FOL-M@NLP were characterized, and various tumour models were established to
assess the antitumour efficacy of the biovaccine. The preliminary mechanism of the
immune effect induced by FOL-M@NLP was studied both in vivo and in vitro. The
biovaccine FOL-M@NLP was effectively taken up by antigen-presenting cells (APCs).
APCs were activated, activating the T-cell response. When FOL-M@NLP was
administered subcutaneously in vivo, their antitumour activity was superior to that of
NLP and FOLactis alone. The biovaccine improved the immune infiltrating state of the
tumour microenvironment and metastasis niche, inhibited tumor progression and
prevented recurrence. It is demonstrated that FOL-M@NLP serves as a potent and safe
antitumour platform that enhances antigen peptide delivery and facilitates the

advancement of therapeutic biological vaccine platforms.
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1. Introduction

Tumor peptide vaccines are extensively employed for their inexpensive cost,
uncomplicated preparation, superior safety, and delivered by multiple carriers.
However, their poor immunogenicity and susceptibility to the immune
microenvironment result in suboptimal efficacy in tumor immunotherapy and restrict
their clinical application. Two directions to solve this problem are as follows. On the
one hand, in the design of synthetic peptides. Peptide vaccines usually consist of epitope
peptides with high affinity for human leukocyte antigen (HLA). Typically, short
peptides (811 amino acids) may not be able to overcome antigenic heterogeneity or
the loss of antigen expression within the tumour, thereby failing to induce a strong
immune response [1]. Therefore, the cytotoxic effect of CD8" T cells is limited, and
CD4" T cells are difficult to activate. Multiepitope long peptide vaccines contain
approximately 20-35 amino acids, which contain more major histocompatibility
complex (MHC) I and MHC 1I epitopes and can activate naive T lymphocytes more
effectively, but a sufficiently high dose of peptides must be delivered to avoid the
induction of T-cell anergy [1]. New York esophageal squamous cell carcinoma-1 (NY-

ESO-1) is an ideal target for the development of long peptide vaccines to treat tumours.
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It is expressed only in some immune-privileged organs, mainly the testis and placenta
[2, 3]. The expression of NY-ESO-1 has been reported in a wide range of tumours, such
as myxoid and round cell liposarcoma (89-100%), neuroblastoma (82%), synovial
sarcoma (80%), melanoma (46%), ovarian cancer (43%), esophageal cancer (32%),
lung cancer (13%), colorectal cancer (8%) and breast cancer (7%) [3-5]. On the other
hand, the delivery of suitable adjuvants and peptides together proves to be a successful
approach for clinical tumour vaccines. Nevertheless, when adjuvants and peptides are
mixed directly, they encounter issues like poor physical stability and easy dissociation,
resulting in uneven formulation and potentially inadequate immune effects. Hence, the
use of proper adjuvants and delivery methods is essential to enhance and prolong the
immune efficacy of peptides [6, 7].

Our team designed a bifunctional engineered Lactococcus lactis (FOLactis), which can
deliver the fusion protein of FMS-like tyrosine kinase 3 ligand (FIt3L) and the
costimulator OX40 ligand (OX40L) [8]. Lactococcus lactis can act as Toll-like receptor
(TLR) agonists and trigger long-lasting innate immune responses with its pathogen-
associated molecular patterns (PAMPs) [9, 10], inhibit tumour growth through its
antiproliferative activity, induction of apoptosis and cell cycle arrest, etc. [11]. FIt3L
promotes the expansion of conventional dentritic cell 1 (¢cDC1) [12]. The OX40/0X40L
signalling axis can upregulate antiapoptotic proteins to maintain T-cell survival;
downregulate regulatory signals; promote the secretion of IFN-y; and maintain immune
memory [13]. Previous experimental studies have shown the engineered bacteria

FOLactis, which can act as a strong immune adjuvant, achieves tumour regression
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mainly by enhancing the innate immune response, promoting dendritic cell (DC)
maturation and strengthening the cytotoxic T lymphocyte response in the tumour
microenvironment (TME) [8].

In this study, through bioinformatics, we screened multiepitope long peptides that target
NY-ESO-1 (NLP). Afterwards, we developed a metal-organic framework (MOF) and
constructed a system with FOLactis to deliver NLP (FOL-M@NLP). This system has
been demonstrated to enhance specific immune responses, change the immune
infiltrating state of TME and metastasis niche, and trigger effective antitumour
activities. These results provide strong support for the development of safe and efficient

tumour peptide vaccines utilizing engineered bacteria (Scheme 1).

2. Materials and methods

2.1. Bacterial strains, cells and animals

FOLactis strain was constructed by our laboratory team and preserved in the laboratory
of the Cancer Center of Nanjing University Drum Tower Hospital. FOLactis was
incubated in M17 (Solarbio, China) medium containing 0.5% (w/v) glucose and 10 pg
mL! chloramphenicol (GM17 medium) at 30°C. When the absorbance of the GM17
medium at 600 nm reached 0.5-0.7, nisin was added to the medium at a concentration
of 10 ng mL!, and the mixture was subsequently incubated for another 4 h.

4T1 breast cancer cells and B16F10 melanoma cells were obtained from the Cell Bank
of the Shanghai Institute of Biochemistry and Cell Biology and cultured with medium

consisting of 89% RPMI 1640 (Corning, USA), 10% fetal bovine serum (FBS)



111 (Beyotime, China), and 1% penicillin and streptomycin (P/S) (Biosharp, China) at 37°C
112 and 5% COa.

113  Bone marrow mesenchymal cells were obtained from the femurs and tibias of
114  C57BL/6J mice. These cells were cultured in medium comprising 89% RPMI 1640, 10%
115  FBS, and 1% P/S at 37°C and 5% COz. To induce differentiation into DCs, the cells
116  were treated with rmIL-4 (10 ng mL™!, Pepro Tech, USA) and rmGM-CSF (20 ng mL-
117 !, Amoytop, China). The culture medium was changed every 48 h, and on day 8, the
118  adherent cells were collected as immature bone marrow-derived dendritic cells
119  (BMDCs).

120  C57BL/6J mice and BALB/c mice aged 4-6 weeks were purchased from Huachuang
121 Sino Pharmaceutical Technology Co. Ltd. (China). All animal experimental protocols
122 were approved by the Laboratory Animal Care and Use Committee of the Affiliated
123 Nanjing Drum Tower Hospital of Nanjing University Medical School (2023AE01063).
124

125  2.2. Prediction of epitopes with affinity for HLA and synthesis of NLP

126 A comprehensive survey of the HLA class I and II loci was conducted, encompassing
127 812211 individuals across 31 provinces, autonomous regions, and municipalities in
128  China. 6 HLA-A alleles and 8 HLA-DRBI1 alleles were selected to represent the genetic
129  diversity of the Chinese population [14]. The amino acid sequence of NY-ESO-1,
130  identified by accession number CAA05908.1, was retrieved from the NCBI database
131 (https://www.ncbi.nlm.nih.gov/). Candidate epitopes for MHC I were identified via

132 NetMHCpan-4.1 (http://www.cbs.dtu.dk/services/NetMHCpan/) and  IEDB
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(http://tools.iedb.org/mhci/), whereas the IEDB binding prediction tool
(http://tools.iedb.org/mhcii/) was utilized for MHC 11 [15, 16].

Epitopes with high affinity for multiple MHC I and II alleles were identified as probable
candidates. The screening criterion included strong binding, defined as an affinity rank
below 0.5%, with various MHC I molecules. Epitopes with rank values between 0.5%
and 2% were classified as weak binders. Our selection process prioritized peptides with
robust affinity and high scores across multiple prediction tools. Owing to the increased
promiscuity of peptide binding to MHC class II molecules, the accuracy of MHC-II
binding prediction is lower than that of MHC-I binding prediction. Consequently, a
broader selection of MHC-II categories is necessary. Epitopes with an affinity rank
below 10% for specific MHC-II molecules were chosen. 3 multiepitope long peptides
from NY-ESO-1 with favourable binding potential for specific HLA types, covering a
broad range of HLA loci, were screened, and the synthesis and validation of the

screened peptides were performed by GenScript (Nanjing, China).

2.3. Detection of peptide affinity to MHC molecules by ELISPOT

Splenocytes from BALB/c mice and C57BL/6J mice were cultured overnight in AIMV
(Invitrogen Gibco, USA) medium containing 0.5% FBS (Invitrogen Gibco, USA),
rmIL-4 (20 ng mL™"), and rmGM-CSF (40 ng mL™) after removal of erythrocytes.
Subsequently, splenocytes were added to 96-well plates at 6 x 10° cells per well. Each
screened peptide was introduced into the experimental wells at a concentration of 50

ug mL!, then resiquimod (3 pg mL™!, Merck, USA) and LPS (50 ng mL"!, Merck, USA)
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were added to all wells after 4 h. On day 2, all cell culture medium was replaced with
AIMYV medium containing 10% FBS, 1% P/S, IL-2 (24 IU mL"!, Pepro Tech, USA) and
IL-7 (50 ng mL"!, Pepro Tech, USA). Cells were continuously cultured and medium
was substituted halfway every 2 days. On day 13, fresh peptide-pulsed cells were
obtained following the procedure outlined for preparation on the first 2 days. On day
14, the previously induced cells (2x10° cells per well) and newly peptide-pulsed cells
(1x10° cells per well) were placed in a 96-well ELISPOT plate pre-coated with IFN-y
and incubated at 37°C for 18-20 hours. According to the instruction, the detection was
performed by mouse IFN-y ELISPOT kit (Dakewe, China). Plates were scanned and

analysed by AID ELISPOT Reader (Germany).

2.4. Preparation and characterization of FOL-M@NLP

7 mmol 2-methylimidazole (Aladdin, China) was dissolved in 10 mL of double distilled
water (ddH20), mixed with 5x10® CFU FOLactis and stirred at 400 rpm for 10 min.
The mixture was then centrifuged at 5000 rpm for 10 min, and only the precipitate
remained. An appropriate amount of NLP solution, 1 mL of 100 umol mL™' magnesium
sulfate solution (Yangzhou Zhongbao Pharmaceutical Co. Ltd. China) and ddH20 were
added to the precipitate, and the mixture was stirred at 400 rpm for 20 min. The
precipitate remaining after centrifugation was FOL-M@NLP. When no peptide was
added during the reaction and only magnesium sulfate was added, the precipitate

obtained after centrifugation was FOL-M.
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2.5. Cytotoxicity studies

FOL-M+NLP (physical mixture of FOL-M and 3 selected peptides, NLP concentration
50 pg mL') and FOL-M@NLP were coincubated with 5000 BMDCs at different
concentrations of FOLactis for 24 h. Then, 10 pL of sterile CCK-8 reagent (Biosharp,
China) was added to each well and incubated at 37°C. The absorbance of each well was
measured with a microplate reader. Cell viability was calculated via the following
formula:

Cell viability(%)=(Ae-As)/(Ac-AB)*x100%

Ar (Experimental group): the absorbance of cells with drugs; 4s (Blank group): the
absorbance of medium; Ac (Control group): the absorbance of cells in medium without

drugs.

2.6. Detection of cellular uptake

NLP-3 was labelled with Cy5-NHS (Duofluor, China), and then FOL-M@NLP-3-Cy5
was prepared. Flow cytometry was used to detect BMDC phagocytosis of FOL-
M@NLP-3-Cy5 and NLP-3-CyS5 at different time points. In addition, NLP-3-CyS5 and
FOL-M@NLP-3-Cy5 were coincubated with immature BMDCs. After 2 h, the BMDC
membrane was stained with DiO (Beyotime, China), and the BMDC nucleus was
stained with DAPI (Beyotime, China). Colocalization of the two irritants and BMDCs

was observed via confocal laser scanning microscopy (Leica, Germany).

2.7. Invitro BMDC and T-cell stimulation
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Immature BMDCs (2x10° cells mL!) were incubated with FOL-M@NLP (2x10” CFU
mL™") or other groups for 24 h. Final concentration of NLP was 50 pg mL™!. The LPS
concentration was 2.5 pug mL™!. After 24 h, activated DCs were detected via flow
cytometry (CD11¢"CD80'CD86"). DCs matured by antigen stimulation were
cocultured with lymphocytes from the mouse spleen at a ratio of 1:10. On day 2, the

CD8'CD69" and CD8'CD25" T cells were detected via flow cytometry.

2.8. In vivo biodistribution

FOL-M@NLP was stained with DiR and subcutaneously injected in the left abdomen
of mice bearing 4T1-NY-ESO-1 subcutaneous tumour. At predetermined time points,
mice were scanned and images were captured by CRi Maestro In Vivo Imaging System
(Cambridge Research & Instrumentation, USA). Afterwards, mice were sacrificed, and
tumours, bilateral tumor-draining lymph nodes (TDLNs) and major organs were

harvested for imaging ex vivo.

2.9. Construction of tumour models and therapy

The primary B16F10-NY-ESO-1 melanoma mouse model was established via the
subcutaneous injection of 5x10° B16F10-NY-ESO-1 cells into C57BL/6] mice. These
mice were randomly divided into 7 groups (rn=5), which were injected with normal
saline (NS); NLP; FOLactis; FOL-M; a physical mixture of aluminum hydroxide gels
adjuvant (Biodragon, China) and three peptides, abbreviated as Al(OH)3+NLP; FOL-
M+NLP and FOL-M@NLP subcutaneously on days 3, 6, 9, and 14 following tumour

10



221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

inoculation. The dosage was that 5x10® CFU of FOLactis per mouse and 100 ug of each
peptide per mouse. The dosage of the classic adjuvant aluminum hydroxide was 60 pg
per mouse. During the treatment, tumour volume and body weight of each mouse was
recorded every 2 days. On day 17, mice from all groups were sacrificed. TDLNs and
tumours were obtained from the mice in each group for immune efficacy testing.

The B16F10-NY-ESO-1 melanoma lung metastasis mouse model was constructed via
the injection of 5x10° B16F10-NY-ESO-1 cells into the tail vein of C57BL/6] mice.
These mice were randomly divided into 6 groups (n=5), namely NS group, NLP group,
FOLactis group, FOL-M group, FOL-M+NLP group and FOL-M@NLP group. On
days 3, 6, 9 and 16 following tumour inoculation, each group of mice received
subcutaneous administration of the same dose as described above. During the treatment,
body weight of each mouse was recorded every 2 days. On day 20, mice from all groups
were sacrificed. TDLNs, spleens and lungs with metastases were obtained from the
mice in each group for immune efficacy testing.

To establish postoperative recurrence-preventing models, 5x10° 4T1-NY-ESO-1 cells
were inoculated subcutaneously into BALB/c mice, and the mice were then randomly
divided into 6 groups (n=5). One week after tumour inoculation, the average
subcutaneous tumour volume of each group was 95-100 mm?, and the tumour-bearing
mice underwent subtotal tumour resection under general anaesthesia. Approximately 5
mm® of tumour remained after surgery. 6 groups of postoperative mice were
subcutaneously injected with NS, NLP, FOLactis, FOL-M, FOL-M+NLP, or FOL-
M@NLP on postoperative days 3, 6, 9, and 16, respectively. Each group of mice

11
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received administration of the same dose as described above. The mice were monitored
every 2 days postoperatively for tumour volume, body weight, and survival, and the
survival endpoint was set when the tumour volume reached 1500 mm?’. On
postoperative day 90, rechallenge experiments were performed via the subcutaneous
inoculation of 5x10° 4T1-NY-ESO-1 cells in the surviving mice and 3 BALB/c mice
without a history of tumour bearing, and the tumour volume, vitality, health status and
survival of the mice were observed.

To explore the preventive potency of the biovaccine, BALB/c mice were randomly
divided into 3 groups and subcutaneously injected with NS, NLP and FOL-M@NLP on
days 1, 4, 7 and 14. On day 19, 5x10° 4T1-NY-ESO-1 cells were inoculated
subcutaneously into the mice and the mice were monitored every 2 days for tumour

volume and body weight.

2.10. Flow cytometry

Anti-mouse CD11c-FITC (117306), anti-mouse CD80-APC (104714), anti-mouse
CD86-PE (105008), anti-mouse CD8a-PerCP/Cyanine5.5 (100734), anti-mouse CD4-
PE (100408), anti-mouse CD69-FITC (104506), anti-mouse CD25-APC (101910),
anti-mouse H-2K%H-2D°- PerCP/Cyanine5.5 (114620), anti-mouse I-A/I-E-PE
(107608), anti-mouse CD86-PE/Cyanine7 (105014), anti-mouse CD8a-APC
(100712),anti-mouse CD3-FITC (100204), anti-mouse CD8a-PE/Cyanine7 (100722),
anti-mouse IFN-y-APC (505810), anti-mouse Granzyme B-BV421 (396414), anti-
mouse CD4-FITC (100405), anti-mouse CD4-PE/Cyanine7 (100422), anti-mouse

12
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CD44-PE (103008), anti-mouse CD62L-PE/Cyanine7 (104418), anti-mouse FOXp3-
PE (126404), anti-mouse NKI1.1-PE (156504), anti-mouse CDI11b-FITC (101206),
anti-mouse F4/80-PE/Cyanine7 (123114), and anti-mouse CD206-APC (141708)
antibodies were purchased from Biolegend (USA). Anti-mouse CD80-BV421 (562611)
and anti-mouse CD103-BV605 (748257) were purchased from BD (USA).

TDLNS, spleens and tumour tissues were harvested from the mice for further analysis.
Single-cell suspensions from TDLNs and spleens were prepared via the mechanical
lapping method. The tumour tissues were cut into pieces and then digested with
collagenase type IV (1 mg mL!, Sigma-Aldrich, USA) for 2 h at 37°C. All samples
were resuspended in ice-cold normal saline, stained with specific antibodies for 30 min
at 4°C in the dark, and washed before analysis. For molecules expressed intracellularly,
such as FOXp3, a Cytofix/Cytoperm™ Fixation/Permeabilization Kit (554714, BD,
USA) was used for the fixation and permeabilization of the cells. The cells were
detected using CytoFLEX (Beckman, USA) and analysed by FlowJo or NovoExpress

software.

2.11. Cytokine measurement

Tumours from each treatment group were collected, weighed, and then rapidly frozen
in liquid nitrogen. Subsequently, the tumour samples were lysed in RIPA buffer
(Beyotime, China) containing 1% protease and phosphatase inhibitor cocktail (NCM
Biotech, China) on ice for 30 min, with approximately 100 mg of samples lysed in 1
mL of buffer, followed by centrifugation (12000 xg, 10 min, 4°C). The protein

13
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concentration of the supernatant was standardized to 4 pg uL! after determined by
bicinchoninic acid assay. Then, 25 pL of samples (100 pg total protein per sample) were
analysed using LEGENDplex™ MU Th1/Th2 Panel (8-plex) w/ VbP V03 (Biolegend,
USA) and the cytokines in TME were detected by flow cytometry. Additionally, 25 pL
of serum from each mouse in treatment groups were harvested and analysed using
LEGENDplex™ MU Th1/Th2 Panel (8-plex) w/ VbP V03, and the cytokines in serum

were detected by flow cytometry.

2.12. RNA sequencing and gene expression analysis of the tumour metastasis niche

Metastases from NS group and FOL-M@NLP (FMN) group were rapidly frozen in
liquid nitrogen after collection. The mRNA samples from the two groups were
subjected to RNA-seq (BerryGenomics, China). Mus_musculus-NCBI-GRCm39 was
selected as the reference genome. The sequencing data were statistically analysed via
RStudio. Volcano plots, heatmaps and bubble plots for Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment and Gene Ontology (GO) enrichment analyses were
generated. Cytoscape was used to perform protein-protein interaction (PPI) analysis

and screen for hub genes.

2.13. Specific immune response detection

BALB/c mice were received various stimulations on days 1, 4, 7, and 14. The doses
were the same as described in section 2.9. One week after the final injection, the spleens
were harvested, and lymphocytes were isolated as effector cells. The effector cells were

14
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co-incubated with 4T1-NY-ESO-1 cells and specific IFN-y secreted by effector cells
were detected by ELISPOT. For determination of the destructive capacity of effector
cells on target cells, 4T1-NY-ESO-1 and wild-type 4T1 cells served as target cells,
which were adjusted to 1x10° cells mL™! and labelled with CFSE (Abcam Plc, UK).
Target cells were cocultured with effector cells for 6 h at a ratio of 1:10 and then labelled
with propidium iodide (PI, 100 ng mL™!, Merck, Germany). The cells were incubated
in the dark at room temperature for 10 min, and PI" target cells were detected by flow

cytometry and analysed using NovoExpress software.

2.14. Statistical analysis

Statistical analyses were performed via GraphPad Prism 9.5.1 software. All the data are
presented as the means = SD of at least three independent experiments. P values were
calculated via two-tailed unpaired Student’s ¢ tests, one-way ANOVA or two-way
ANOVA. The log-rank (Mantel-Cox) test was used for survival analysis. Flow

cytometry data were analysed via FlowJo 10.8.1 and NovoExpress.

3. Results

3.1. NY-ESO-1 sequence analysis and epitope prediction

Bioinformatic methods were used to screen long peptides with multiple epitopes from
NY-ESO-1. On the basis of a comprehensive survey of HLA T and II restrictive loci,
which includes 812211 unrelated volunteers from diverse regions of China, 6 HLA-A
alleles were selected that cover 66.26% of the HLA-A alleles of Chinese people: HLA-

15
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A*01:01 (3.59%), HLA-A*02:01 (12.04%), HLA-A*02:01 (20.89%), HLA-A*24:02
(15.55%), HLA-A*30:01 (5.97%) and HLA-A*33:03 (8.23%) [14]. Moreover, 8 HLA-
DRBI alleles were also filtered according to the survey and accounted for 66.6% of the
HLA-DRBI1 alleles identified in Chinese people. These 8 alleles were HLA-
DRB1*03:01 (5.1%), HLA-DRB1*04:05 (4.82%), HLA-DRB1*07:01 (9.66%), HLA-
DRB1*08:03 (6.31%), HLA-DRB1*¥09:01 (14.79%), HLA-DRB1*11:01 (5.63%),
HLA-DRB1%*12:02 (8.71%), and HLA-DRB1*15:01 (11.58%) [14]. On the basis of the
screening results, 3 long peptides derived from the NY-ESO-1 sequence were identified.
NLP-184-111: ESRLLEFYLAMPFATPMEAELARRSLAQ; NLP-2122-153:
LLKEFTVSGNILTIRLTAADHRQLQLSISSCL; NLP-3157-180:
SLLMWITQCFLPVFLAQPPSGQRR. These 3 peptides contained multiple epitopes
that have high affinity for major HLA-I and HLA-II molecules (Table 1). The 3
peptides also contained epitopes with affinity for MHC molecules in BALB/c mice and
C57BL/6J mice (Tables 2 and 3), and the binding affinity to MHC molecules of the
selected peptides has been validated by ELISPOT (Fig. 1A). Therefore, these 2 model
organisms were selected in this study to investigate the tumour suppressor effects of

these peptides.

Table 1 Potential epitopes for different MHC molecules in the NY-ESO-1 sequence

CD8"T-cell epitope CD4"T-cell epitope

Peptides HLA-I HLA-II
Position Sequence Position Sequence

restriction restriction
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NLP-1: ESRLLEFYLAMPFATPMEAELARRSLAQ

84-91 ESRLLEFY A*01:01 84-97 ESRLLEFYLAMPFA DRBI1*15:01
86-94 RLLEFYLAM A*02:01
97-106  ATPMEAELAR A*11:01
97-106  ATPMEAELAR A*33:03
NLP-2: LLKEFTVSGNILTIRLTAADHRQLQLSISSCL
127-135 TVSGNILTI A*02:01 123-136 LKEFTVSGNILTIR DRB1*09:01
127-136  TVSGNILTIR A*11:01 124-137 KEFTVSGNILTIRL DRB1*07:01
127-136 TVSGNILTIR A*33:03 128-143  VSGNILTIRLTAADHR DRB1%12:02
139-147 AADHRQLQL A*01:01 129-144 SGNILTIRLTAADHRQ DRB1*08:03
135-148 IRLTAADHRQLQLS DRB1%*03:01
NLP-3: SLLMWITQCFLPVFLAQPPSGQRR
157-165 SLLMWITQC A*02:01 166-180 FLPVFLAQPPSGQRR  DRBI1*04:05
160-170 MWITQCFLPVF A*24:02 167-180  LPVFLAQPPSGQRR  DRBI1*11:01
171-179 LAQPPSGQR A*11:01
171-180 LAQPPSGQRR A*33:03

350
351  Table 2 Potential epitopes for different MHC molecules of BALB/c mice contained in
352 NLP
CD8*T-cell epitope CD4*T-cell epitope
Peptides H-21 H-211
Position Sequence Position Sequence

restriction

restriction
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NLP-1: ESRLLEFYLAMPFATPMEAELARRSLAQ

90-100 FYLAMPFATPM H-2-K¢ 94-107  MPFATPMEAELARR H2-TA¢

94-104 MPFATPMEAEL H-2-L¢

97-104 ATPMEAEL H-2-D¢

NLP-2: LLKEFTVSGNILTIRLTAADHRQLQLSISSCL

127-135 TVSGNILTI H-2-K¢  129-143 SGNILTIRLTAADHR  H2-IA¢
129-137 SGNILTIRL H-2-L¢  132-146  ILTIRLTAADHRQLQ  H2-IE¢
139-147  AADHRQLQL H-2-D¢

NLP-3: SLLMWITQCFLPVFLAQPPSGQRR

163-171 TQCFLPVFL H-2-K¢ 167-180  LPVFLAQPPSGQRR H2-IE¢

168-178 PVFLAQPPSGQ H2-IA¢

353
354  Table 3 Potential epitopes for different MHC molecules of C57BL/6J mice contained

355 inNLP

CD8"T-cell epitope CD4"T-cell epitope

Peptides H-21 H-21I
Position Sequence Position Sequence

restriction restriction

NLP-1: ESRLLEFYLAMPFATPMEAELARRSLAQ

86-94 RLLEFYLAM H-2-K® 93-106 AMPFATPMEAELAR H2-TA®

96-104 FATPMEAEL H-2-DP

NLP-2: LLKEFTVSGNILTIRLTAADHRQLQLSISSCL

127-135 TVSGNILTI H-2-D®
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138-145 TAADHRQL H-2-K®

NLP-3: SLLMWITQCFLPVFLAQPPSGQRR

162-170 ITQCFLPVF H-2-K® 168-178 PVFLAQPPSGQ H2-IA®

163-171 TQCFLPVFL H-2-D®

3.2. Preparation and characterization of FOL-M@NLP and cell lines

2-Methylimidazole binds to Mg?" via coordination to form MOFs for loading NLP [17-
19]. Under the action of electrostatic force and imine bonding, MOFs that load peptides
can spontaneously attach to the surface of FOLactis to construct FOL-M@NLP [20,
21]. Images captured by scanning electron microscopy (SEM) revealed that FOLactis
and FOL-M@NLP were ellipsoidal, the surface of FOLactis was smooth, whereas
granular MOF attached to the rough surface of FOL-M@NLP (Fig. 1B and S1). The
distribution of elements on the surface of the biovaccine was detected by chemical
mapping using energy dispersive spectroscopy (EDS) in SEM, and the proportions of
various elements were measured. (Fig. 1C and 1D). Through dynamic light scattering
(DLS) analysis, the sizes of FOLactis and FOL-M@NLP were evenly distributed, and
the particle size of FOL-M@NLP (1353 £+ 147.4 nm) was larger than that of FOLactis
(1050 = 23.25 nm) (Fig. 1E and 1F). There was no significant difference in the
polydispersity index (PDI) between the two particles (Fig. 1G). Due to teichoic acid
and peptidoglycan in the cell wall, the surface of FOLactis was negatively charged with
a zeta potential of -25.50 £ 0.36 mV. After loading of MOF containing NLP, the zeta

potential was elevated to -17.23 + 0.15 mV (Fig. 1H). The encapsulation efficiencies
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(EE) of 3 selected peptides in the biovaccines were determined via high-performance
liquid chromatography and are depicted in Fig. 11. The EE of NLP-1 was approximately
55% regardless of input dosage, while the EE of NLP-2 increased with more feeding
peptides. NLP-3 exhibited ideal binding capacity during preparation, with EE reaching
above 90%. Under the simulated acidic immune microenvironment, most of the 3
peptides would be released from the biovaccine within 48 h (Fig. 1J). After co-cultured
with splenocytes in the cell culture medium for 24 h and activated for 16 h, FOLactis
from the biovaccine rapidly enter the logarithmic growth phase in the GM17 medium
containing chloramphenicol and reach the plateau phase in about 10 h (Fig. 1K). While
coated on GM17 agar plates containing chloramphenicol and incubated at 30°C,
FOLactis from the biovaccine formed monoclonal colonies, indicates that the activity
of FOLactis itself was not obviously affected after being loaded with MOF (Fig. 1L
and S2).

4T1 breast cancer cells and B16F10 melanoma cells were selected for the construction
of tumour models. The CTAGIB gene was integrated into the DNA of these host cells
via lentiviral infection, and the expression of NY-ESO-1 in 4T1-NY-ESO-1 cells and
B16F10-NY-ESO-1 cells was verified by Western blotting and immunohistochemistry

(Fig. S3).

3.3. Invitro immune response induced by FOL-M@NLP
We coincubated FOL-M+NLP and FOL-M@NLP with BMDCs at different bacterial
concentrations. As shown in Fig. 2A, the engineered bacteria loaded with NLP did not
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show obvious cytotoxicity.

To explore the ability of FOL-M@NLP to be taken up by BMDCs in vitro, immature
BMDCs were coincubated with NLP-3-Cy5 and FOL-M@NLP-3-Cy5. Then, the
BMDCs were collected at different time points during coincubation (0.5 h, 2 h, 6 h, 12
h, 24 h, 36 h, and 48 h) for flow cytometry analysis (Fig. 2B and S4). Compared with
NLP-3-Cy5, FOL-M@NLP-3-Cy5 could be taken up by BMDCs continuously and
efficiently. The uptake and intracellular distribution of Cy5 by DCs were analysed via
confocal microscopy. Compared with NLP-3-Cy5, FOL-M@NLP-3-Cy5 accumulated
more in the cytoplasm of BMDCs (Fig. 2C).

To explore the ability of FOL-M@NLP to stimulate BMDC maturation in vitro, we
cocultured immature BMDCs with 1640 medium containing different substances, and
the levels of the costimulatory molecules CD80 and CD86 on the surface of BMDCs
(CD11c") were detected via flow cytometry. After stimulation with FOL-M@NLP-1,
FOL-M@NLP-2, and FOL-M@NLP-3, the proportions of mature DCs reached 63.23
+1.68%, 63.23 +£2.03%, and 62.33 £ 1.52%, respectively. The proportions in the NLP-
1, NLP-2, and NLP-3 groups were 47.05 + 1.11%, 45.98 £ 3.54%, and 32.48 £+ 0.25%,
respectively. After stimulation with lipopolysaccharide (LPS), the proportion of mature
DCs reached 57.25 £2.03% (Fig. 2D and S5). It can be concluded that the biovaccines
(FOL-M@NLP-1, FOL-M@NLP-2, and FOL-M@NLP-3) promoted the maturation of
BMDC:s for the proportion of mature DCs in each of the 3 groups was greater than 60%,
and the maturation-promoting effect of FOL-M@NLP was significantly better than that
of the naked peptides (NLP-1, NLP-2, and NLP-3).
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To explore the activation of T cells by this biovaccine, immature BMDCs were
incubated with 1640 medium containing different components and then cocultured with
lymphocytes. On the next day, the proportions of CD8" CD69" T cells and CD8* CD25*
T cells in the FOL-M@NLP group were significantly greater than that in the NLP and
the FOLactis groups, with the FOL-M@NLP group proportionally reaching 45.80 +
0.51% and 20.34 + 0.50%, respectively (Fig. 2E, 2F and S6), which revealed that FOL-

M@NLP was able to induce T-cell activation better than the naked peptides.

3.4. Biodistribution and antitumour effect of FOL-M@NLP, and immune response
induced by FOL-M@NLP in vivo

Firstly, to investigate the biodistribution of FOL-M@NLP, the biovaccine was labeled
with DiR and administered subcutaneously. The biovaccine exhibited in vivo
persistence for approximately 2 weeks (Fig. 3A and 3C). Upon administration, the
biovaccine rapidly accumulated within the local tumor-draining lymph node (TDLN)
and the tumour site, reaching peak enrichment within 24 hours for sustained therapeutic
action (Fig. 3B, 3D and 3E). Notably, no obvious signal was detected in other organs,
suggesting the favorable biosafety profile of the biovaccine.

Next, the antitumour effect of FOL-M@NLP in vivo was assessed. A subcutaneous
B16F10-NY-ESO-1 melanoma mouse model was constructed and different treatments
was administered (Fig. 3F). As depicted in Fig. 3G and S7, the application of FOL-
M@NLP significantly limited the growth of melanoma, while compared with NLP and
FOLactis alone. No statistically significant differences were found among the body

22



440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

weights of the 7 groups of mice at each time point (Fig. 3H). Tumours were harvested
at the observation endpoint, the size and the average weight of the tumours from the
FOL-M@NLP group were the lowest, indicating the potent antitumour effect of the
biovaccine (Fig. 31 and 3J).

To determine the mechanism of the immunological responses induced by FOL-
M@NLP in vivo, Tumours and TDLNs were harvested from the mice in all the groups
to detect changes in the immune microenvironment via flow cytometry. In TDLNS,
FOL-M@NLP could increase the level of MHC 1 (8.57x10% = 1.55%10%) and MHC 11
(10.13x10% £ 1.17x10%) expression on DCs for antigen presentation (Fig. 4A, 4B and
S8). In TME, the proportion of CD103" DCs in the FOL-M@NLP group (42.04 +
16.23%) was highest and had a nearly 18-fold increase compared to the NS group (2.39
+ 1.11%), and the ratio of CD8" DCs showed a 5.2-fold increase in the FOL-M@NLP
group (19.97 + 9.49%), which was higher than the AI(OH)3+NLP group (9.64 +
7.17%) (Fig. 4C, 4D and S9). In TME, the expressions of MHC I (4.52x10* £ 0.60x
10%) and MHC 1I (6.00x10® + 0.82x10°) were also the highest while compared with
other groups, indicating antigen presentation might be further facilitated (Fig. 4E, 4F,
4K and 4L). In the MHC I" DCs, the proportion of mature DCs (CD80"CD86") in the
FOL-M@NLP group (30.44 + 16.65%) was significantly higher while compared with
the NS group (2.02 + 1.09%), the NLP group (2.59 + 0.33%), the FOLactis group
(5.67 £ 4.05%) and the FOL-M group (3.51 + 1.17%). The peptide-major
histocompatibility complex (pMHC) on these DCs might be recognized by the receptor
of CD8" T cells (Fig. 4G and S10A). Similarly, FOL-M@NLP promoted the
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maturation of MHC II" DCs (35.73 + 19.37%) more sufficiently than Al(OH)3+NLP
group (14.74 + 4.47%) and other groups, with CD4" T cells more activated (Fig. 4H
and S10B). In the presence of cytokines, the activated CD8" T cells express IFN-y to
exert specific cytotoxicity and granzyme B to induce apoptosis of tumour cells. The
biovaccine FOL-M@NLP had successfully enhanced the production of IFN-y (29.70 +
2.21%) and granzyme B (19.14 + 6.86%) in the cytoplasm of CD8" T cells (Fig. 41,
4J and S11). Relevant cytokines in TME had also be tested to analyse the changes of
cytokine levels within the TME. With the application of FOL-M@NLP, the level of IL-
4, IL-6, IL-10 and IL-13 in TME had decreased (Fig. S12). No Significant differences
in the levels of various cytokines in the serum have been found, indicate no risk of
severe systemic inflammatory response following application of the biovaccine, and

elucidate the safety profile of this biovaccine (Fig. S13).

3.5. Anti-metastatic effect of FOL-M@NLP, and immune response induced by FOL-
M@NLP in a melanoma metastasis model

To estimate the anti-metastatic effect of FOL-M@NLP in vivo, a B16F10-NY-ESO-1
melanoma lung metastasis mouse model was constructed. Model construction,
treatment planning, and observation endpoint are shown in Fig. SA. Throughout the
treatment period, changes in the body weights of the mice were observed, and there was
no significant difference among the groups (Fig. 5B). The weights of lungs with
metastases were measured at observation endpoint, and the average weight of the FOL-
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M@NLP group was the lowest, indicating that the fewest metastases were attached to
the lungs (Fig. 5C). Many black metastases were attached to the lungs in the NS,
FOLactis and FOL-M groups, and the pulmonary tissue structure was completely
destroyed, whereas fewer metastases were observed in the NLP and FOL-M+NLP
groups. The metastases of the FOL-M@NLP group were the fewest (Fig. 5D).
Hematoxylin-eosin staining images of the lungs revealed that the lung tissue structures
of the FOL-M@NLP group were clear and that the alveolar structures were intact, with
thin and uniform alveolar walls and no many abnormal cells in the alveolar cavity;
moreover, the bronchial mucosal epithelium was intact. In the other groups, multiple
focal hyperchromatic areas were visible and distributed within the pulmonary
parenchyma. The metastatic foci presented as nodules or showed diffuse infiltration.
The surrounding lung tissue was compressed, and the local alveolar structures collapsed
or disappeared. Larger metastatic foci coalesced into patches (Fig. SE).

To determine the mechanism of the immunological responses induced by FOL-
M@NLP, lungs with metastases, spleens and TDLNs from each group were harvested
from the mice in all the groups to detect changes in the immune microenvironment via
flow cytometry. In TDLNSs, the proportion of CD8" Tewm cells in the FOL-M@NLP
group (27.12 +£2.07%) was significantly greater than that in the other groups, indicating
that, compared with those in the other controls, naive CD8" T cells were more inclined
to differentiate into CD8" Tewm cells that can destroy target cells after being stimulated
with FOL-M@NLP (Fig. 6A and S14A). The proportion of CD4" Tem cells in the FOL-
M@NLP group (37.66 + 3.09%) was also significantly greater than that in the other
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groups, indicating that the cell population capable of exerting antitumour immune
effects in TDLNs was further expanded (Fig. 6B and S14B).

Compared with the NS group (5.60 = 0.45%), both the FOL-M-+NLP (8.46 + 1.25%)
and FOL-M@NLP (9.14 £ 0.91%) groups promoted the proliferation of cytotoxic CD8"
T cells in the spleen, and the promotion of FOL-M@NLP was more obvious than that
of the NLP group (7.00 + 0.82%) (Fig. 6C and S15A). Similar to TDLNSs, in spleen,
the proportion of CD8" Tem cells in the FOL-M@NLP group (18.56 + 1.56%) was
significantly greater than that in the other groups (Fig. 6D and S15B). The proportion
of CD4" Tewm cells in the FOL-M@NLP group (24.94 £ 2.31%) was also the highest
and was significantly different from that in the other groups except for the FOL-M
group (24.50 + 2.09%) (Fig. 6E and S15C). Compared with other controls, the
biovaccine can fully mobilize the immune response potential of the spleen.

In the tumour metastasis niche, the FOL-M@NLP group had the highest proportion of
CD8" Tewm cells (19.86 + 4.79%) in all groups (Fig. 6F and S16A). In the presence of
different cytokines, helper T cells can differentiate into subpopulations such as Thl
cells, Th2 cells and regulatory T cells (Tregs). Tregs accounted for the lowest proportion
of helper T cells in the FOL-M@NLP group (3.23 £ 0.56%) among all groups,
suggesting that Treg proliferation and infiltration were significantly limited in the
presence of the biovaccine (Fig. 6G and S16B). The FOL-M@NLP vaccine also
activated innate immunity in the tumour metastasis niche. The degree of NK cell
infiltration was greater in both the FOL-M+NLP group (5.48 + 2.04%) and the FOL-
M@NLP group (5.57 £ 1.47%) than in the NS group (2.93 + 0.29%) (Fig. 6H and
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S16C). After vaccine stimulation, the direction of macrophage polarization changed
after activation. The ratio of classically activated macrophages/alternatively activated
macrophages was greater in the FOL-M+NLP group (0.48 = 0.10) than in the NS group
(0.19 £ 0.07) and the NLP group (0.24 + 0.09), whereas the ratio in the FOL-M@NLP
group (0.74 £ 0.17) was significantly greater than the ratios in all the other groups (Fig.
61). Compared with those in the other groups, the macrophages in the FOL-M@NLP
group were more inclined to differentiate towards the classically activated type (17.93
+ 6.66%) (Fig. S17).

Immunofluorescence staining of lungs with metastases revealed that the IFN-y* cells in
the FOL-M@NLP group were mainly clustered in some fields and were well infiltrated
there, whereas the IFN-y" cells in the other control groups were sparsely dispersed in
the tumour metastasis niche (Fig. 5F). Under the effect of FOL-M@NLP, the
infiltration of PD-1" cells and PD-L1" cells within the tumour metastasis niche was
greater than that in the NS group (Fig. S18).

To summarize, FOL-M@NLP showed adequate tumour suppression relative to the
other controls. In TDLNs and the spleen, the two major sites where immune responses
occur, APCs, after phagocytosis of this vaccine and effective activation, can present
processed epitopes to T cells, which can be fully activated, proliferate, differentiate into
effector T cells, migrate to the tumour metastasis niche and fully infiltrate under the
action of chemokines to enhance attack on target cells and inhibit the negative
regulation of immunity. Moreover, innate immune cells are also activated and fully
infiltrate in the tumour metastasis niche, further enhancing tumour suppression.

27



550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

3.6. Analysis of molecular biological changes in the tumour metastasis niche induced
by FOL-M@NLP

To clarify the changes in the tumour metastasis niche after the application of FOL-
M@NLP at the molecular biology level, RNA sequencing was performed on lungs with
melanoma metastases. Compared with NS, the application of FOL-M@NLP
significantly upregulated 1086 genes and downregulated 79 genes. Some key genes
involved in antitumour immune functions were upregulated after the application of
FOL-M@NLP (Fig. 7A). Heatmap analysis revealed that most of the genes associated
with positive immunity in the tumour metastasis niche of the FOL-M@NLP group were
highly expressed compared with those in the NS group (Fig. 7B). KEGG pathway
enrichment analysis revealed immune pathways related to antigen presentation, the
binding of cytokines to their receptors, the differentiation of helper T cells, and the
cytotoxicity of NK cells, as well as signalling pathways involving cytokines and
chemokines in the immune process (Fig. 7C). GO analysis was performed to enrich
terms related to biological processes (BP), cellular components (CC) and molecular
functions (MF). BP enrichment involved adaptive immune processes, such as
phagocytosis, antigen processing and presentation, T-cell activation and differentiation,
and cell killing, as well as immune processes through the tumour necrosis factor
superfamily and NK cells. CC analysis enriched Inflammatory complexes, especially
AIM2 inflammasome complex, in immune cells, MHC complexes on the surface of
APCs, T cell receptors (TCRs), and immune synapses. According to the MF analysis,
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molecules that perform positive immune functions during adaptive and innate immunity
were also enriched (Fig. 7D). The hub genes screened by PPI network analysis were
Ifng, Cd4, Itgax, Sell, Gzmb, Ptprc and Ccr7 (Fig. TE). Ifng, encoding interferon-y that
induces specific immune response; Cd4, encoding surface marker of helper T-cells that
regulate cytotoxic immune response; ltgax, encoding CDl1lc and having integrin-
binding activity and receptor tyrosine kinase-binding activity; Sel/, encoding L-selectin
(CD62L), which acts as lymph node homing receptor; Gzmb, encoding granzyme B that
induces apoptosis of target cells; Ptprc, participating in the positive regulation of T cell
activation and the regulation of protein phosphorylation; Ccr7, Enhancement of C-C
chemokine receptor activity involved in positive regulation of immune response
(Corroborated in NCBI database). All the hub genes play positive roles in different
stages of antitumour immunity. At the molecular biology level, the biovaccine FOL-
M@NLP reinforced each stage of the adaptive immune response while also facilitating

the destructive function exerted by the innate immunity against tumour cells.

3.7. Recurrence prevention of FOL-M@NLP in postoperative tumour model

The postoperative model was designed to observe the ability of FOL-M@NLP to
prevent recurrence after tumour resection. Model construction, treatment planning, and
observations are shown in Fig. 8A. The body weights of the mice in all 6 groups slowly
increased after surgery, indicating that the mice were in a state of slow recovery after
surgical stress. No statistically significant differences were found among the body
weights of the 6 groups of mice at each time point, indicating that the safety of the 6
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groups of drugs was good and that none of them affected the postoperative recovery of
the mice (Fig. 8B). Tumour growth curves indicated that FOL-M@NLP inhibited
tumour growth better than other groups (Fig. 8C). Within the first 30 days after surgery,
the mice in the NS, NLP, FOLactis, and FOL-M groups were all tumour-bearing, and
all the tumours showed significant growth, whereas 1 mouse in the FOL-M+NLP group
and 3 in the FOL-M@NLP group were in a non-recurrence state (Fig. 8D). All the mice
in the NS, NLP, FOLactis, and FOL-M groups reached the survival endpoints on
postoperative days 42, 42, 40, and 48, respectively, and there was no statistically
significant difference in survival among the groups. At postoperative day 90, 1 mouse
(20%) was still alive in the FOL-M+NLP group, and 2 mice (40%) were alive in the
FOL-M@NLP group (Fig. 8E). None of these 3 mice experienced tumour recurrence.
Both FOL-M+NLP and FOL-M@NLP prevented postoperative tumour recurrence and
improved survival in mice, whereas FOL-M@NLP was more effective than the other 4
treatments were.

On postoperative day 90, rechallenge experiments were performed. The tumour growth
was slower in the FOL-M+NLP and FOL-M@NLP groups than in the control group in
the first 30 days after rechallenge (Fig. 8F). 1 mouse in the FOL-M@NLP group was
not tumour-bearing until day 29 after rechallenge (Figs. 8G and S19). All the mice in
the control, FOL-M+NLP and FOL-M@NLP groups reached the survival endpoints on
days 37, 38 and 55 after rechallenge, respectively (Fig. 8H). After FOL-M@NLP
effectively prevented tumour recurrence, it also left immune memory in the body, which
could exert an inhibitory effect on tumour growth when encountering the same tumour
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3.8. Preventive effect exerted by FOL-M@NLP against tumour

In addition to good tumour inhibition and prevention of postoperative recurrence, the
vaccine also exhibited good prevention against tumours. After 4 times of vaccination
and being challenged with tumour (Fig. 9A), there was no significant difference in the
weight changes of the mice in each group during the observation process (Fig. 9B), and
the tumour growth of the mice that were vaccinated with NLP was not significantly
different from that of the NS group, whereas after the application of FOL-M@NLP, the
growth of the tumours was significantly inhibited compared with that of the NS group
and the NLP group, which showed the preventive potency of the vaccine against

tumours (Fig. 9C, 9D and S20).

3.9. Specific immune response and biosafety of FOL-M@NLP

A mouse vaccination model was constructed to verify immune response specificity and
biosafety (Fig. 9E). The spleen lymphocytes of mice were harvested as effector cells.
4T1-NY-ESO-1 cells were selected as target cells. Splenocytes that received NLP
stimulation induced more IFN-y spots after restimulation with NY-ESO-1 antigen
expressed by target cells, whereas splenocytes that had received FOL-M@NLP
stimulation showed a significant increase in NY-ESO-1-specific IFN-y secretion with
exposure to the antigen (Fig. 9F). Compared with other groups, the effector cells had a
significant destructive effect on target cells after they were stimulated with FOL-
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M@NLP (15.93£0.91%). After stimulation with FOL-M+NLP, effector cells were also
able to effectively destroy target cells (11.4140.51%), but the destruction effect was
inferior to that of FOL-M@NLP (Fig. 9G and S21A). For comparison, wild-type 4T1
cells were also selected as target cells and cocultured with effector cells. The difference
in the proportion of destroyed target cells among the 6 groups was not statistically
significant (Fig. 9H and S21B). On the basis of these results, the main target of FOL-
M@NLP was the NY-ESO-1 antigen expressed by target cells. Biochemical analysis
revealed no significant differences in alanine aminotransferase, aspartate
aminotransferase, alkaline phosphatase, urea, or creatinine among the 6 groups (Fig.
S22). In addition, no evidence demonstrated that the main organs of the mice (heart,
liver, spleen, lung and kidney) in these 6 groups were damaged (Fig. S23). The above

results revealed the favourable biosafety of the biovaccine.

4. Discussion

In this study, we synthesized a biovaccine targeting the cancer testis antigen NY-ESO-
1. The reason why the NY-ESO-1 protein was not selected but the NLP was that the
NY-ESO-1 protein is easily folded during the synthesis process, resulting in the
antigenic epitope being difficult to fully expose; thus, the recombinant protein is
difficult to be recognized by the APCs, whereas the peptide with only several dozens
of amino acids can directly expose the antigenic epitopes to the APCs, making it easier
to bind to TCR and activate the downstream immune response [2, 22, 23]. In our study,
3 NY-ESO-1 multiepitope long peptides screened by bioinformatic methods exhibited
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affinities to MHC I and II.

Naked peptides usually have a short half-life and poor stability in vivo. To overcome
these limitations, adjuvants need to be used in combination [1]. Baumgaertner et al.
combined NY-ESO-1 long peptide (79-108) with Montanide and the TLR3 agonist
CpG-ODN in patients with stage III/IV melanoma and reported that it could induce
integrated, robust and functional CD8" and CD4" T-cell responses in patients [5].
FOLactis, an engineered Lactococcus lactis strain that secretes FIt3L and OX40L fusion
proteins designed by our team previously, was injected in situ to regulate key
components of the antitumour immune response [8]. Metal elements, such as
magnesium, can effectively activate the immune response [24]. On the basis of the
above results, we developed a MOF composed of magnesium and 2-methylimidazole.
The MOF was loaded on the surface of FOLactis and loading the NY-ESO-1
multiepitope long peptides into the framework, and the biovaccine FOL-M@NLP was
synthesized.

We characterized the synthesized vaccine with a series of properties. The particle-like
roughness of the FOL-M@NLP surface and Mg?" distributed on the bacterium has
proved that MOF was successfully loaded on FOLactis. The 3 peptides exhibited
distinct properties of EE and could be gradually released from the biovaccine in the
simulated immune microenvironment. The loading of MOF onto FOLactis did not
significantly affect the activity of FOLactis itself. The activity of cells was also not
affected after coincubation with the biovaccine, and the biovaccine showed low toxicity
on cells.
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After entering the body, antigen peptides are taken up and processed by APCs. The
pMHC on the surface of mature APCs can bind to the surface receptors of naive T cells.
The immunoreceptor tyrosine activation motif (ITAM) on the surface of T lymphocytes
is phosphorylated, initiating the molecular signals of T lymphocyte activation [25].
Moreover, the signalling of costimulatory molecules on the surface of DC cells and T
lymphocytes can further promote the activation of T lymphocytes, such as intercellular
adhesion molecule 1 (ICAM-1)/leukocyte function antigen-1 (LFA-1) and
CD80/CD86/CD28 [26, 27]. We simulated the recognition and uptake of the vaccine
by APCs, the maturation of APCs, and the activation of T cells in vitro. NLP can be
efficiently taken up by BMDCs, while recognition and uptake of FOL-M@NLP by
BMDC:s are quicker. PAMPs on FOL-M@NLP can be recognized and bound by pattern
recognition receptors on DCs, mainly TLR1, TLR2 and TLR6 [8], and then accelerate
the uptake process. Under the combined effect of multiepitope long peptides and
PAMPs on FOLactis, DCs can rapidly differentiate into a mature state after
phagocytosis of FOL-M@NLP. T cells were also rapidly activated under stimulation
with pMHC presented by mature DCs, and the costimulatory signal. Compared with
NLP alone or FOLactis alone, FOL-M@NLP increased the efficiency of the immune
response in vitro.

Melanoma is a malignant neoplasm that is likely to metastasize and sometimes
expresses the NY-ESO-1 antigen [3, 4]. Thus, NY-ESO-1-positive primary melanoma
model and lung metastasis model were established to validate the inhibition of tumour
progression and metastasis by FOL-M@NLP. FOL-M@NLP significantly inhibited the
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process of neoplasm progression, as evidenced by the observation of primary tumours
and metastases. FOL-M@NLP can adequately exert an immune response at sites of
immune cell differentiation, primarily the TDLN and spleen, by activating settled T
cells after antigen presentation and allowing them to differentiate into effector-ready
subpopulations. DCs settled in tumour sites may ingest tumour antigens or exogenous
antigens, mature and upregulate MHC I and MHC II expression to enhance classical
antigen presentation and cross-presentation. Guided by chemokines, T cells reach TME
or the tumour metastasis niche, were activated again and rapidly exert specific
cytotoxicity upon encountering antigens expressed in the tumour, activate the caspase
cascade reaction and induce apoptosis in target cells through the perforin-granzyme
pathway as well as the Fas-FasL pathway [28]. Tregs are suppressor immune cells that
express TGF-B, which suppresses the antigen presentation of DCs as well as the
activation of NK cells and macrophages [29, 30]. TGF-p also induces immune escape
in tumours via stromal synthesis and vascular production [31]. CD8" T cells and Thl
cells can suppress the populations and functions of Treg cells by secreting IFN-y [32].
In this study, FOL-M@NLP successfully promoted the infiltration of IFN-y" CD8" T
cells in TME and effector memory CD8" T cells in the metastasis niche, which could
inhibit the differentiation of helper T cells to Tregs. After destruction by cytotoxic T
cells, tumour cells release damage-associated molecular patterns (DAMPs). DAMPs
can act as endogenous adjuvants to reactivate APCs, cross-present tumour antigens and
act as amplifiers of the T-cell immune response [33]. DAMPs also fully mobilize the
capacity of innate immunity [34-36], which was verified in our study by the infiltration
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of NK cells and macrophage polarization in the tumour metastasis niche after the
application of FOL-M@NLP. After vaccination with FOL-M@NLP, IFN-y" cells could
aggregate, with specific cytotoxicity enhanced, maturation of DCs promoted, the
expression of MHC I and MHC II molecules upregulated, macrophage polarization
toward the classically activated type promoted and the level of vascular endothelial
growth factor regulated to limit angiogenesis, etc [32]. After the application of FOL-
M@NLP, the infiltration of PD-1" cells and PD-L1" cells into the tumour site increased,
and the immune microenvironment transformed from a “cold” state to a “hot” state [37].
Cytokines in TME exert multiple functions in immunity. The presence of IL-4 and IL-
13 in TME promotes “M2-like” tumour-associated macrophages proliferation, induce
CD4" T cells to skew towards Th2 polarization and inhibit the cytotoxic function of
CD8 " T cells [38, 39]. IL-10 blunts APC response to antigen stimulation, inhibit the
proliferation and function of CD4'T cells to induce nonresponsiveness and anergy [40,
41]. IL-6 acts on tumour cells to induce the expression of STAT3, which further induce
the expression of factors that promote angiogenesis, invasiveness or metastasis, and
immunosuppression. STAT3 induced by IL-6 often exerts negative regulatory effects
on DCs, effector T cells and NK cells, while positively regulate Tregs and myeloid-
derived suppressor cells, resulting in downmodulation of antitumour immunity [42,
43].With the administration of FOL-M@NLP, IL-4, IL-13,IL-10 and IL-6 in TME have
downregulated and the immune microenvironment has improved.

Through molecular biology studies, we found that many immune-related genes, which
are overexpressed in the tumour metastasis niche, were upregulated following the
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application of FOL-M@NLP. KEGG pathway enrichment involved major pathways of
cellular and molecular signalling and the enhancement of innate and adaptive immunity,
which was corroborated by GO enrichment term analysis of BP, CC and MF. The above
results confirm on multiple levels that the biovaccine FOL-M@NLP can adequately
inhibit tumour metastasis by activating innate and adaptive immunity.

We also developed a postoperative model and a prevention model to assess the role of
the vaccine in preventing tumour and recurrence. FOL-M@NLP effectively inhibited
tumour growth without affecting recovery after encountering surgical stress and was
effective in preventing tumour recurrence and prolonging survival. The results of the
rechallenge experiments illustrated that the application of FOL-M@NLP could leave
immune memory in vivo and could exert immune efficacy after encountering the same
antigen. FOL-M@NLP also has a good potency to prevent tumours. This biovaccine
was confirmed to be specific when encounters cells expressing NY-ESO-1 and had a
favourable safety profile.

There are several limitations in our study. First, without the help of adjuvants, the
individual effects of the 3 peptides we screened were not prominent. Thus, the
conjugation of adjuvants was indispensable. Second, some immunosuppressive genes,
such as Cd274, which encodes PD-L1, are also highly expressed. After the application
of the vaccine, the degree of effector T-cell infiltration in the metastasis niche increased,
and the immune state of tumour transformed from “cold” to “hot”, resulting in a high
tumour mutational burden and increased PD-L1 expression [37]. The application of
anti-PD-L1 monoclonal antibodies may block this immunosuppressive signalling
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pathway and positively modulate immune efficacy. Third, although vaccines can
suppress tumours through immune effects, their destructive effects are still not as strong
as those of chemotherapy and radiotherapy on tumours. Some chemotherapeutic drugs
and radiotherapy can induce immunogenic tumour cell death, release more DAMPs,
and amplify the antitumour immune effect; thus, the effect of the combined application
of'this biovaccine and chemotherapy/radiotherapy is also a direction that needs in-depth

research.

5. Conclusion

In this study, a combination of engineered bacteria with multiepitope antigenic peptides
was developed to construct an efficient tumour vaccine. We screened three multiepitope
long peptides from the cancer testis antigen NY-ESO-1 and used the engineered bacteria
FOLactis as a carrier and adjuvant to construct a multiepitope long peptide biovaccine.
The experimental results revealed that the biovaccine could quickly enhance the
endocytosis efficiency of APCs, activate the immune response of immature DCs and
naive T cells, enhance the expansion of immune cells in immune organs and the
infiltration of immune cells in TME or tumour metastasis niche, inhibit tumour growth
and recurrence, and prolong the survival of tumour-bearing mice. The biovaccine

construction strategy provides new ideas for the preparation of tumour vaccines.
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983  Fig. 1. Preparation and characterization of FOL-M@NLP. (A) IFN-y secretion,
984  assessed through ELISPOT assay, from splenocytes that underwent stimulation with 3
985  selected peptides from NY-ESO-1 (n=3). (B) Images of FOLactis and FOL-M@NLP
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captured by scanning electron microscopy (SEM), scale bar=500 nm. (C) Distributions
of various elements on FOL-M@NLP determined by chemical mapping using energy
dispersive spectroscopy (EDS) in SEM, scale bar=1 um. (D) Proportions of various
elements determined by SEM/EDS. (E) Representative size distributions for FOLactis
and FOL-M@NLP via dynamic light scattering. (F) Mean size of FOLactis and FOL-
M@NLP (n=3). (G) Polydispersity index of FOLactis and FOL-M@NLP (n=3). (H)
Zeta potential of FOLactis and FOL-M@NLP (n=3). (I) Encapsulation efficiencies of
3 selected peptides at different feeding doses. (J) Cumulative release of 3 selected
peptides at different time points (n=3). (K) Growth trajectories of FOLactis in different
groups after activation. Optical density at 600 nm (OD600) were recorded at specified
time intervals (n=3). (L) Colonies grown from FOLactis in different groups on GM17
agar plates containing chloramphenicol. The original bacterial suspension was coated
on the plate after being diluted by 10° folds (»=3). The error bars represent the means
+ SD. Statistical significance was determined by analysis of P values calculated via

two-tailed unpaired Student’s ¢ tests or one-way ANOVA.
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Fig. 2. In vitro immune response induced by FOL-M@NLP. (A) Cytotoxicity of FOL-
M+NLP and FOL-M@NLP on BMDC (n=3). (B) Phagocytosis of NLP-3-Cy5 and
FOL-M@NLP-3-Cy5 by BMDCs in vitro detected by flow cytometry at different
durations (0.5 h,2 h, 6 h, 12 h, 24 h, 36 h, and 48 h) (n=5). (C) Intracellular distributions
of Cy5 in BMDCs after being incubated with NLP-3-Cy5 or FOL-M@NLP-3-Cy5 for
2 h. The BMDC nucleus was stained with DAPI (blue), the BMDC membrane was
stained with DiO (green), and Cy5 expression in the peptides is shown in red.
Intracellular distributions were detected using confocal microscopy. Scale bar=6 pm.
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(D) Flow cytometry statistics of mature DCs (CD11¢*CD80"CD86") in BMDCs after
being coincubated with NLP, FOLactis, FOL-M, FOL-M+NLP, or FOL-M@NLP for
24 h. Blank 1640 medium was used as a negative control (NC), and LPS (2.5 pg mL™)
was used as a positive control (n=4). (E-F) Flow cytometry statistics of activated T cells
(CD8'CD69" and CD8*CD25%) in CD8" T cells (n=5). T cells were cocultured with
BMDC:s that incubated with NLP, FOLactis, FOL-M, FOL-M+NLP, and FOL-M@NLP
previously. Blank 1640 medium was used as the NC. The error bars represent the means
+ SD. Statistical significance was determined by analysis of P values calculated via

two-tailed unpaired Student’s ¢ tests or one-way ANOVA.
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Fig. 3. Biodistribution and antitumour effect of FOL-M@NLP in vivo. (A)
Biodistribution images of 4T1-NY-ESO-1 bearing mice following subcutaneous
injection of FOL-M@NLP at different time intervals (n=4). (B) Biodistribution images
of tumours, tumour-draining lymph nodes (TDLNs) and major organs harvested from
4T1-NY-ESO-1 bearing mice following subcutaneous injection of FOL-M@NLP at
different time intervals (n=4). (C) Total radiant efficiency of FOL-M@NLP in vivo at
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different time intervals following subcutaneous injection (n=4). (D) Total radiant
efficiency of FOL-M@NLP in tumours at different time intervals following
subcutaneous injection (n=4). (E) Total radiant efficiency of FOL-M@NLP in left
TDLNs at different time intervals following subcutaneous injection (n=4). (F)
Schematic diagram of the therapeutic schedule for mice bearing B16F10-NY-ESO-1
subcutaneous melanoma. Created in BioRender.com. (G) Tumour growth curves of
B16F10-NY-ESO-1 tumour-bearing mice with different treatments (n=5). (H) Weights
of B16F10-NY-ESO-1 tumour-bearing mice during the therapeutic period (n=5). (I)
Photographs of tumours harvested from mice in all groups on day 17 after tumour
inoculation. (J) Weights of tumours harvested from mice in all groups on day 17 after
tumour inoculation (n=5). The error bars represent the means = SD. Statistical
significance was determined by analysis of P values calculated via one-way ANOVA

or two-way ANOVA.
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1044  Fig. 4. Changes in immune microenvironment in vivo induced by FOL-M@NLP in
1045  primary B16F10-NY-ESO-1 melanoma model. (A) Flow cytometry statistics of MHC
1046 I expression on DCs in TDLNs of each group (n=5). (B) Flow cytometry statistics of
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MHC 1I expression on DCs in TDLNs of each group (n=5). (C) Flow cytometry
statistics of CD103" DCs (CD11¢"CD103") in tumours of each group (n=5). (D) Flow
cytometry statistics of CD8" DCs (CD11¢"CD8") in tumours of each group (n=5). (E)
Flow cytometry statistics of MHC I expression on DCs in tumours of each group (n=5).
(F) Flow cytometry statistics of MHC II expression on DCs in tumours of each group
(n=5). (G) Flow cytometry statistics of mature DCs expressing MHC I (CD11¢" MHC
I" CD80"CD86") in tumours of each group (n=5). (H) Flow cytometry statistics of
mature DCs expressing MHC 1T (CD11¢” MHC IT" CD80*CD86") in tumours of each
group (n=5). (I) Flow cytometry statistics of IFN-y" cytotoxic T cells (CD3" CD8" IFN-
¥") in tumours of each group (n=5). (J) Flow cytometry statistics of granzyme B *
cytotoxic T cells (CD3" CD8" granzyme B™) in tumours of each group (n=5). (K)
Representative flow cytometry images of MHC I expression on DCs in tumours of each
group. (L) Representative flow cytometry images of MHC II expression on DCs in
tumours of each group. The error bars represent the means + SD. Statistical significance

was determined by analysis of P values calculated via one-way ANOVA.
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Fig. 5. Anti-metastatic effect of FOL-M@NLP in B16F10-NY-ESO-1 melanoma lung
metastasis model. (A) Schematic diagram of the therapeutic schedule for mice bearing
B16F10-NY-ESO-1 melanoma lung metastases. Created in BioRender.com. (B)
Weights of B16F10-NY-ESO-1 metastasis-bearing mice during the therapeutic period
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on day 20 after tumour inoculation (n=5). (D) Photographs of lungs with metastatic
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lesions harvested from mice in all groups on on day 20 after tumour inoculation. (E)
Hematoxylin—eosin staining images of lungs with metastatic lesions harvested from
mice in all groups on day 20 after tumour inoculation. Scale bar=100 um. (F)
Immunofluorescence images of CD4", CD8" and IFN-y" cells in lungs with metastatic
lesions harvested from mice in all groups on day 20 after tumour inoculation. Scale
bar=50 um. The error bars represent the means + SD (n=5). Statistical significance was

determined by analysis of P values calculated via one-way ANOVA.
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1083  Fig. 6. Changes in immune microenvironment in vivo induced by FOL-M@NLP in
1084  B16F10-NY-ESO-1 melanoma lung metastasis model. (A) Flow cytometry statistics of
1085  effector memory CD8" T cells (CD8"CD44"CD62L") in TDLNs of each group (n=5).
1086  (B) Flow cytometry statistics of effector memory CD4" T cells (CD4"CD44"CD62L")

59



1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

in TDLNSs of each group (n=5). (C) Flow cytometry statistics of CD8" T cells in spleens
of each group (n=5). (D) Flow cytometry statistics of effector memory CD8" T cells
(CD8"CD44"CD62L") in spleens of each group (n=5). (E) Flow cytometry statistics of
effector memory CD4" T cells (CD4"CD44"CD62L") in spleens of each group (n=5).
(F) Flow cytometry statistics of effector memory CD8" T cells
(CD3"CD8'CD44"CD62L") in tumours of each group (n=5). (G) Flow cytometry
statistics of regulatory T cells (CD3"CD4"CD25"FOXp3™") in tumours of each group
(n=5). (H) Flow cytometry statistics of NK cells (NK1.17) in tumours of each group
(n=5). (I) Ratios of classically activated macrophages (CD11b"F4/80°CD86%) to
alternatively activated macrophages (CD11b"F4/80°CD206") detected by flow
cytometry (n=5). The error bars represent the means + SD. Statistical significance was

determined by analysis of P values calculated via one-way ANOVA.
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Fig. 7. RNA-seq analysis of tumour metastasis niche between the NS group (#n=3) and

the FOL-M@NLP group (FMN, n=3). (A) Volcano map of differentially expressed

genes between the NS and FMN groups. The x-axis represents the logz scale of the fold
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change in gene expression. Negative values indicate downregulation; positive values
indicate upregulation. The y-axis represents the minus logio scale of the g values (the
adjusted p values), indicating a significant difference in expression. The red dots
represent significantly upregulated genes with at least logz(fold change)>1 and ¢<0.05,
whereas the blue dots represent significantly downregulated genes with at least
log2(fold change) <-1 and ¢<0.05. 6 representative genes related to key immune
functions are displayed. (B) Heatmap of representative differentially expressed genes
(DEGs) that play a positive role in the immune process. These genes were completely
clustered and were displayed from blue to white to red according to the Z score from
small to large. (C-D) KEGG pathway enrichment analysis and Gene Ontology (GO)
term enrichment analysis. GO enrichment analysis included analysis of biological
process (BP), cellular component (CC) and molecular function (MF) terms. The x-axis
represents the Rich factor. The y-axis represents the enriched pathways/terms. Changes
in bubble size from small to large indicated that the number of DEGs in the
pathway/term changed from small to large. The changes in bubble color from blue to
red indicate that the -logio(g value) changed from small to large. (E) Protein-protein
interaction (PPI) network of DEGs. Changes in the circle size from small to large
indicate that the betweenness changes from small to large. Changes in the brightness of
a circle from light to dark indicate the degree changes from small to large. The central

proteins were encoded by the hub genes.
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Fig. 8. Antitumour effect of FOL-M@NLP in breast cancer postoperative recurrence-
preventing model. (A) Schematic diagram of the therapeutic schedule for mice bearing
4T1-NY-ESO-1 tumour. Created in BioRender.com. (B) Weights of mice from all
groups during 30 days post-surgery (n=5). (C) Tumour growth curves of 4T1-NY-ESO-
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1 tumour-bearing mice with different treatments (n=5). (D) Tumour growth curves of
each mouse in different groups (n=5). (E) Survival curves of the different groups within
90 days after surgery (n=5). (F) Tumour growth curves of mice in different groups after
rechallenge. (G) Tumour growth curves of each mouse in the control group and FOL-
M@NLP group. (H) Survival curves of different groups within 60 days after
rechallenge. The error bars represent the means + SD. Statistical significance was
determined by analysis of P values calculated via two-way ANOVA or log-rank

(Mantel-Cox) test.
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Fig. 9. Tumour-preventive potency and specific immune efficacy of FOL-M@NLP. (A)
Schematic diagram of the vaccination schedule for mice before challenged with
tumours. Created in BioRender.com (B) Weights of 4T1-NY-ESO-1 tumour-bearing
mice from all groups following tumour inoculation (r#=5). (C) Tumour growth curves
of 4T1-NY-ESO-1 tumour-bearing mice from all groups following tumour inoculation
(n=5). (D) Tumour growth curves of each mouse in different groups (n=5). (E)
Schematic diagram of the vaccination schedule for mice. (F) IFN-y secretion, assessed
through ELISPOT assay, from splenocytes that underwent different stimulation (n=3).

(G) Flow cytometry statistics of destroyed 4T1-NY-ESO-1 cells (PI") in CFSE" 4T1-
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NY-ESO-1 cells of each group (n=3). (H) Flow cytometry statistics of destroyed wild-
type 4T1 cells in CFSE" wild-type 4T1 cells of each group (n=3). The error bars
represent the means + SD. Statistical significance was determined by analysis of P

values calculated via one-way ANOVA or two-way ANOVA.
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Highlights

® [ong peptides screened from the NY-ESO-1 protein contain multiple epitopes with
affinity for human and mouse major histocompatibility complexes I and II.

® The biovaccine FOL-M@NLP can be effectively taken up by antigen-presenting
cells (APCs), then matures APCs and activates T lymphocytes in vitro.

® FOL-M@NLP effectively displays marked anti-tumour or preventive efficacy in
various tumour models, enhance the expansion of immune cells in immune organs,
improved the immune infiltrating state in tumours and activates innate and
adaptive immune response adequately.

® The application of FOL-M@NLP induces specific cytotoxicity against target cells

expressing NY-ESO-1 and exhibits favourable safety profiles.
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